Congenic strains confirm the presence of salt-sensitivity QTLs on chromosome 1 in the Sabra rat model of hypertension.

نویسندگان

  • Chana Yagil
  • Norbert Hubner
  • Reinhold Kreutz
  • Detlev Ganten
  • Yoram Yagil
چکیده

We previously detected by linkage analysis in segregating populations derived from crosses between the Sabra hypertension-prone rat (SBH/y) and the hypertension-resistant strain (SBN/y) two QTLs for salt susceptibility on chromosome 1, with sex specificity: in males SS1a and SS1b, and in females SS1b only. To provide support for a functional role of these QTLs in relation to hypertension, we constructed congenic strains by replacing most of or selected segments from chromosome 1 from SBN/y with the homologous chromosomal regions of SBH/y, or reciprocally from SBH/y with segments of SBN/y, leaving the other chromosomes unperturbed. Genetic screening with over 150 microsatellite markers confirmed the homozygosity of the targeted genomic inserts and of the remainder of the genomic background. The phenotype of the congenic strains was tested by salt loading with DOCA-salt over a 4-wk period and measuring blood pressure by tail-cuff (in all animals) or radiotelemetry (in select groups) at baseline and during salt loading. In the congenic strains in which a chromosomal segment incorporating QTL SS1a from SBN/y was introgressed onto the genomic background of SBH/y, the blood pressure response to salt loading, as measured by tail-cuff, was decreased by 16 mmHg in both males and females compared with the parental SBH/y; replacing the QTL SS1b reduced the blood pressure response by 30 and 21 mmHg, respectively. In the congenic strains in which both SS1a and SS1b were introgressed from SBN/y onto the genomic background of SBH/y, the reduction in blood pressure was 34 mmHg in males and 38 mmHg in females; these latter results were confirmed by radiotelemetry. When either one or both QTLs together were introgressed from SBH/y onto the SBN/y genomic background, tail-cuff measurements failed to detect an increase in blood pressure above baseline; telemetric measurements in the congenic strains introgressing both QTLs together, however, detected a significant rise in blood pressure after 3 and 4 wk of salt loading. Neither the origin of the Y chromosome nor the sex of the parental strain had any significant impact on the magnitude of the blood pressure response to salt loading. We conclude that the congenic rat strains that we constructed for the chromosome 1 QTLs provide functional evidence for the role of gene systems within QTLs SS1a and SS1b in the blood pressure response to salt loading. The unexpected finding was that QTL SS1a contributes to the hypertensive response also in females. The data indicate the lack of a Y chromosomal effect or of parental imprinting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of chromosome X in the Sabra rat model of salt-sensitive hypertension.

We carried out a total genome screen in the Sabra rat model of hypertension to detect salt-susceptibility genes. We previously reported in male animals the presence of 2 major quantitative trait loci (QTLs) on chromosome 1 that together accounted for most of the difference in the blood pressure (BP) response to salt loading between Sabra hypertension-prone rats (SBH/y) and Sabra hypertension-re...

متن کامل

Salt susceptibility maps to chromosomes 1 and 17 with sex specificity in the Sabra rat model of hypertension.

Random genome screening was initiated in the Sabra rat model of hypertension in search of genes that account for salt sensitivity or salt resistance in terms of the development of hypertension. Female salt-sensitive Sabra hypertension-prone (SBH/y) rats were crossed with male salt-resistant Sabra hypertension-resistant (SBN/y) rats, resulting in an F2 cohort consisting of 100 males and 132 fema...

متن کامل

Comprehensive congenic coverage revealing multiple blood pressure quantitative trait loci on Dahl rat chromosome 10.

Chromosome mapping based on congenic strains can restrict quantitative trait loci (QTLs) for blood pressure (BP) into small intervals that are otherwise indistinguishable in linkage analysis. Also, congenic strains can be created to test a candidate gene to be a BP QTL. Taking full advantage of these features, we produced 10 congenic strains by replacing various segments of chromosome (Chr) 10 ...

متن کامل

Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR.

To dissect the genetic architecture controlling blood pressure (BP) regulation in the spontaneously hypertensive rat (SHR) we derived congenic rat strains for four previously mapped BP quantitative trait loci (QTLs) in chromosomes 2, 4, and 16. Target chromosomal regions from the Brown Norway rat (BN) averaging 13-29 cM were introgressed by marker-assisted breeding onto the SHR genome in 12 or ...

متن کامل

Multiple quantitative trait loci for blood pressure interacting epistatically and additively on Dahl rat chromosome 2.

Our previous work demonstrated 2 quantitative trait loci (QTLs), C2QTL1 and C2QTL2, for blood pressure (BP) located on chromosome (Chr) 2 of Dahl salt-sensitive (DSS) rats. However, for a lack of markers, the 2 congenic strains delineating C2QTL1 and C2QTL2 could not be separated. The position of the C2QTL1 was only inferred by comparing 2 congenic strains, one having and another lacking a BP e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2003